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Plant petioles and stems are hierarchical cellular structures, displaying geometrical features defined at
multiple length scales. One or more of the intermediate hierarchical levels consists of tissues in which
the cellular distribution is quasi-random, a factor that affects the elastic properties of the tissues. The cur-
rent work focuses on the finite element analysis (FEA) of the constituent tissues of the plant Rheum rha-
barbarum (rhubarb). The geometric model is generated via a recently introduced method: the finite edge
centroidal Voronoi tessellation (FECVT), which is capable to capture the gradients of cellularity and diver-
sified pattern of cellular materials, as opposed to current approaches in literature. The effective stiffness
of the tissues is obtained by using an accurate numerical homogenization technique via detailed finite
element analysis of the models of sub-regions of the tissues. As opposed to a large-scale representative
volume element (RVE), statistical volume elements (SVE) are considered in this work to model tissue
microstructures that are highly random. 2D finite element analyses demonstrate that the distribution
of cells in collenchyma and parenchyma tissue make them stiffer in two different directions, while the
overall effect of the combined tissues results in approximately equal stiffness in both directions. The rhu-
barb tissues, on the other hand, are more compliant than periodic and quasi-uniform random cellular
materials by a factor of up to 47% and 44%, respectively. The variations of the stiffness shows the stiffen-
ing role that cell shape, size, and graded cellular distribution play in the mechanics of the rhubarb tissue.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Plants are one of the major kingdoms in biology. From a struc-
tural point of view, plants and their organs frequently exhibit
excellent mechanical properties. Among their organs, the petiole
that attaches the leaf to the stem resembles a cantilever beam,
which supports the leaf against gravity, allowing for its exposure
to the sun. The petiole of Rheum rhabarbarum (rhubarb) plant as
shown in Fig. 1(a) is an example of a cantilever beam that must re-
sist combined loads including bending and twisting. The petiole’s
flexural and torsional stiffness are largely controlled by its overall
geometric properties and the stiffness of its constituent tissues. A
plant organ (e.g. petiole) is generally composed of an assembly of
cellular tissues, which make up its microstructure and largely gov-
ern its physical properties. Each tissue grows to meet specific func-
tional requirements that guarantee plant survival in a given
environment. The way in which multiple tissues are geometrically
assembled within an organ helps determine mechanical perfor-
mance, important for structural support. It has been demonstrated
that the shape, size, and spatial distribution of cells governs the
physical, biological, and structural properties of a cellular (tissue)
material (Ghosh et al., 1996; Pasini, 2008). The microstructural
analysis of the virtually modelled cellular microstructure of a plant
tissue is crucial to the understanding of its mechanical behaviour
(Faisal et al., 2010). The results of a microstructural analysis, which
might provide the stiffness of both the individual tissues and their
combination help to provide insights into the effect of cell size,
shape, and cellular distribution with clustered and complex area
of higher gradients which usually occur in rhubarb petioles.

The petiole can be considered as a hierarchical structure, having
structural features defined at multiple length scales. A petiole is
generally composed of an assembly of cellular tissues, whose
mechanical characteristics collectively depend on the geometry
of their constituent cells, cell wall composition, the structural
properties of the wall constituents, and the microarchitecture of
the tissues. The orders of structural hierarchy considered in the
current work for the rhubarb petiole are represented by n as shown
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Fig.1. Multiscale hierarchical organization of a plant (Rheum rhabarbarum) petiole. [n] denotes the hierarchical level of the multiscale structure. (1�2000 Rosie Lerner, Purdue
University; 2�US Department of Energy Genome Programs/genomics.energy.gov.)
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in Fig. 1. As indicated in Fig. 1, n = 1 corresponds to the cell wall,
n = 2 to tissue, and n = 3 to the petiole. This work specifically fo-
cuses on the microstructural analysis at the tissue level (n = 2)
since the microstructural attributes of a tissue, such as the size
and shape of the cells, and their distribution within a tissue largely
affect the overall structural properties of the petiole.

Microstructural analysis of cellular solids is crucial to under-
standing their overall behavior since cellular solids are prevalent
both in nature and in human-made engineering structures. Many
researchers have modeled natural cellular solids using repeating
unit cells to construct a regular microstructure in the form of a cir-
cular, square or hexagonal array of cells (Gibson and Ashby, 1982).
Closed-form relations of the structure–property can be derived
with simplified geometric models based on repeated unit cells
(Gibson and Ashby, 1999; Silva et al., 1995). Nevertheless, the
modeling of plant tissue is a challenging task since natural cellular
solids often exhibit non-periodic arrangement of cells. Since the
microstructure of plant tissue is typically heterogeneous in shape
and size, as shown in Fig. 2, the Voronoi tessellation can be used
to generate an accurate representation of a non-periodic micro-
structure (Li et al., 2005; Silva and Gibson, 1997; Silva et al.,
1995). The Voronoi tessellation is used extensively to model grain
geometry for the property characterization of polycrystalline
aggregates (Cailletaud et al., 2003) and inter granular cracks (Huss-
ain et al., 1993). There is a strong correlation between the micro-
structural geometry and the structural properties of space-filling
networks. The interdependence between topology, geometry and
physical dynamics of the spherulitic grain size-shape arrangement
in semi-crystalline polymeric cellular networks has been shown
both experimentally and theoretically (Chan and Rey, 1997; Huang
et al., 1999; Kamal et al., 1997). Mattea et al. (Mattea et al., 1989)
and Roudot et al. (Roudot et al., 1990) pioneered the use of Voronoi
tessellation to model the microstructure of fruit tissues. Both
groups aimed only to capture the randomness of the fruit tissue
microstructure without necessarily producing a model that accu-
rately represented the real tissue. Recently, Ntenga et al. (Beakou
and Ntenga, 2011; Ntenga and Beakou, 2011) tried to analyse the
structure, morphology and mechanical properties of Rhectophyllum
camerunense (RC) plant fiber using a conventional Voronoi
Fig.2. Paraffin-embedded rhubarb petiole cross-section stained with TBO and imaged w
together to create this composite image. Collenchyma cells, vascular bundle, and parenc
diagram. Due to the inherent drawbacks of the Voronoi model,
semi-infinite edges were present at the boundary of the fiber, mak-
ing the model unsuitable for finite element analysis (FEA). To gen-
erate a geometric model having finite edges at the boundary, a
finite-edge centroidal Voronoi tessellation (FECVT) method has
been recently developed (Faisal et al., 2012). The FECVT method
has been applied to model the tissue microstructures of Arabidopsis
thaliana and Philodendron melinonii, two plants with distinct tissue
architecture (Faisal et al., 2012). In this work, the FECVT method is
applied to generate the virtual model of the rhubarb tissue (Fig. 2).
In particular, the FECVT method is applied here for the first time to
generate both the collenchyma and parenchyma tissues and their
combined pattern, which is critical to determine the overall
mechanical behaviour of rhubarb tissue. The presence of vascular
bundles, clustered higher area gradients, in the parenchyma tissue,
make the geometric replication of these patterned tissue challeng-
ing. This paper shows that the FECVT method can handle and rep-
licate complex heterogeneity that emerges in plant tissues. Hence,
the virtual models that will be obtained here for rhubarb allows
calculate the effective stiffness of their tissue via FEA.

Most studies on the homogenization of cellular solids are based
on regular models with a periodic microstructure. Real solid foams,
however, exhibit amorphous arrangements of pores having differ-
ent sizes and shapes far from being periodic. The homogenized/
apparent elastic property for periodic honeycomb varies from 10
to 15% compared to non-periodic honeycomb (Silva et al., 1995).
To consider the microstructural irregularity, the Voronoi cell finite
element method (VCFEM) was developed and coupled with asymp-
totic homogenization method to generate globally homogenized
elastic properties (Ghosh et al., 1996). This method considers the lo-
cal periodicity of the microstructure only. To take into account the
global periodicity in the irregular microstructures represented by
the Voronoi tessellation, the homogenization process requires a
large scale representative volume element (RVE). Analyses of such
models had been provided by, among others, Silva et al. (Silva
et al., 1995), Fazekas et al. (Fazekas et al., 2002), Roberts and
Garboczi (Roberts and Garboczi, 2001) for both two and three-
dimensional models. These studies demonstrated that even a large
scale RVE of a plant tissue having heterogeneous cellularity may not
ith light microscopy at 20� magnifications. Approximately 16 photos were stitched
hyma cells are visible. Scale bar = 50 lm.
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be representative of the respective tissue. Moreover, the large scale
RVEs are inefficient in terms of computational effort. To overcome
this limitation, the computational homogenization technique can
be applied to several small scale RVEs, rather than to large scale
RVE, with non-periodic microstructures for global homogenization.
In this approach, the stochastically selected RVEs, termed as statis-
tical volume element (SVE) (Ostoja-Starzewski, 1993, 1998, 2006),
are able to effectively consider the microstructural irregularity
present in the plant tissues. For a given boundary condition, the
effective mechanical properties of rhubarb tissues can be predicted
by the numerical simulation of each SVE performed by finite ele-
ment analysis. However, the concept of SVE is coupled with the
FECVT method and for the first time applied here to determine
the stiffness of plant tissue.

The specific objectives of this paper are to: (1) generate the geo-
metric models of the constituent tissues of rhubarb petiole using
FECVT algorithm; (2) determine the normalized effective (homog-
enized) stiffness of the constituent tissues based on finite element
analysis of the SVEs (FECVT models); (3) compare the effect of
alternative microarchitectures of the constituent rhubarb tissues
with periodic and quasi-uniformly distributed cells.

The organization of this paper is as follows. Section 2 describes
the methods adopted in this work to meet the objectives. Section 3
delineates the results obtained for the rhubarb tissues, and Section 4
interprets the physical significance of the results by comparing them
with periodic and quasi-uniformly distributed microstructures.
2. Finite element modeling of the effective tissue stiffness

Although the mechanical properties of a random microstructure
can be determined by using direct numerical simulation, this strat-
egy is computationally expensive to apply throughout the whole
domain. Instead, the homogenized/effective properties of a mate-
rial with random microstructure can be obtained from an RVE,
which allows one to bypass the use of a large scale and detailed
numerical simulation (Alber et al., 1992; Nemat-Nasser and Hori,
1999). The RVE contains the essential microstructural features
and has been widely used to compute the effective material prop-
erties of heterogeneous and composite material having microstruc-
tural irregularities, such as grains, inclusions, voids, fibers and
others. Since the intrinsic non-homogeneity in the constituent tis-
sues of the rhubarb petiole is highly random, a single FECVT model
to capture the heterogeneity is not viable, because the requirement
of the RVE size, being infinite, is neither practical nor desirable;
furthermore, the simulation of a large RVE may suffer from a signif-
icant computational burden (Liu et al., 2010; Yin et al., 2008).

In the present analysis, to overcome the above limitations and
to capture the effect of microstructural variability in the constitu-
tive tissue properties, we adopt the concept of SVE. The size of the
SVE is smaller than a conventional RVE, but larger than the micro-
structure characteristic length scale (Ostoja-Starzewski, 1993,
1998, 2006). Hence, each of the FECVT models of a particular tissue
should correspond to the respective SVE for the numerical simula-
tion so as to capture the microstructural randomness present in
the tissue. To obtain the effective/homogenized mechanical prop-
erties, the numerical simulation of compressive deformation in
each SVE is performed by finite element analysis. The stochastic
approach of using several SVEs is, therefore, expected to better rep-
resent the overall randomness commonly appearing in a tissue.
2.1. Geometric (virtual) modeling of plant tissue

A Voronoi microstructure is constructed based on a set of ran-
domly generated points called Voronoi sites. The cell boundaries
are drawn such that any point within the enclosed polygon is
closer to its Voronoi site than to the Voronoi sites of the sur-
rounding polygons. The Voronoi tessellation thus divides a space
into as many regions as the Voronoi sites. The centroids of the
cells are here used to construct the Voronoi diagram, defining a
Centroidal Voronoi Tessellation (CVT). We operate as follows.
First, a color or greyscale micrograph of a plant tissue is subjected
to image segmentation. Thresholding, a method for image seg-
mentation, is then used to convert the colour or greyscale image
into a binary (black and white) image. The Canny edge detection
algorithm (Canny, 1986) is used to detect the shapes of the cells
precisely.

Once the shapes of the cells are detected, the 1st order mo-
ments of the cells are computed using X and Y coordinates of the
pixels. The algebraic form of the moment equation of a digital im-
age is.
mpq ¼
Xn1

i¼1

Xn2

j¼1

Xp
i Yq

j f ði; jÞ ð1Þ
where (Xi, Yj) is the coordinate of the i, j th pixel, f(i, j) have value 1 if
the i, j th pixel is in the shape and 0 otherwise. Considering the re-
gion of interest, which is completely enclosed in a rectangular re-
gion G of size n1 by n2 pixels, i varies from 1 to n1, and j varies
from 1 to n2 in the function f(i, j). For a 2D region, p + q denotes
the order of moment, where p and q are integers. Hence, the coor-
dinates of a cell are
X ¼ m10

m00
and Y ¼ m01

m00
ð2Þ
where the zeroth moment, physically, is equal to the area of the
region.

After determining the centroids of the cells, the Voronoi tessel-
lation is constructed based on the Quick hull algorithm (Barber
et al., 1996). The outcome is a conventional CVT with semi-infinite
edges at the boundary. The finite element analysis of the Voronoi
model having semi-infinite edges may lead to erroneous result
(effective stiffness) since the boundary conditions applied at an
infinite distance are not realistic. This problem is especially diffi-
cult to correct in models with irregular shape contour.

To remove the infinite edges from the boundary, the centroids
of the outermost cells are determined. For each centroid, the dis-
tances between the centroid and the surrounding Voronoi sites
(centroids of the surrounding polygons) are calculated, and the
minimum distance is determined. An imaginary point is created
such that the distance between itself and the centroid is half of
the minimum distance. The imaginary point is thus created for
each of the selected centroid. Based on the set of imaginary points
and the convex hull algorithm (Barber et al., 1996), a boundary is
imposed, after which a Boolean subtraction is realized. With this
Boolean operation, the semi-infinite edges are truncated, and the
vertices of the truncated edges are reconnected to form the final
boundary. The FECVT technique is, therefore, capable of capturing
the microstructure of an image with an arbitrarily shaped bound-
ary contour. This computational algorithm, FECVT method (Faisal
et al., 2012), is applied here to model the rhubarb tissue micro-
structure shown in Figs. 3–5. Since the micrographs are used to
generate the geometric models of the tissues, the accuracy of the
models appears to depend on the quality of the experimentally ac-
quired micrographs. As a result, the cellular distribution of the sur-
rogate model of the tissue strongly depends on the quality and
image clarity of the micrographs. If the micrograph of the tissue
microstructure is vivid and clear, the FECVT method can capture
the details of a cellular distribution with a good level of accuracy.



Fig.3. FECVT model of collenchyma tissue of rhubarb petiole.

Fig.4. FECVT model of parenchyma tissue of rhubarb petiole.

Fig.5. FECVT model of combined collenchyma–parenchyma (col-par) tissue of rhubarb petiole.
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2.2. Construction of the FE model

The geometric information of the FECVT model (i.e., SVE) is
transferred to ANSYS to generate the FEA model. The cell walls
are considered to be straight and of uniform thickness throughout
the surrogate tissue model. The relative density of a given model is
specified by assigning the appropriate cell wall thickness. The con-
stitutive behavior of the wall material is assumed to be elastic-per-
fectly plastic. Each cell wall of the Voronoi microstructure is
modeled with a BEAM23 element, capable of describing both elas-
tic and plastic behavior. The shear deformation, which is important
for stubby beams, also is captured by considering the shear deflec-
tion coefficient of the beam element. The beam elements have a
rectangular cross-section of uniform thickness t. The relative
density, q⁄/qs of the SVE, is given by.

q�

qs
¼ area of solid walls

total area of Voronoi model
¼ t

PN
i¼1li

LXLY
ð3Þ

where N is the total number of beams, li is the length of the beam i;
LX and LY are the dimensions of the Voronoi model along the X and Y
axes, respectively. The FEA is conducted for different relative densi-
ties, adjusted by the value of t. In the finite element analysis, a
Young’s modulus Es = 1 is assigned to each beam to obtain the nor-
malized tissue stiffness. To present the FE results in non-dimen-
sional form, the value of Young’s modulus is only chosen for
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convenience. The finite element model accounts for the appropriate
loading and boundary conditions, as explained next.

2.3. Loading and boundary condition

One of the most important aspects of using the FEA is the selec-
tion and implementation of the most appropriate boundary condi-
tions, which should lead to the average global behavior for the 2D
FECVT models and avoid any localized deformation near the mesh
boundaries. Three types of boundary conditions (BC) generally im-
posed by the FEA are the (1) periodic boundary condition, (2) pre-
scribed displacement boundary condition, and (3) mixed boundary
condition. Since the microstructures of the tissues (and the corre-
sponding FECVT models) are not periodic, the periodic boundary
condition is not appropriate. The prescribed displacement boundary
condition is very strong restriction and is usually used with prob-
lems related to plastic deformation. The mixed boundary condition
enforces the normal displacement, which eliminates the tangential
force and the bending moments at the nodes on the boundaries.
Since the mixed boundary condition tends to underestimate the
Young’s modulus (Zhu et al., 1997), the displacement boundary
condition has been adopted here as it was proved to be appropriate
for the analysis of non-periodic microstructures under uniaxial and
biaxial loading (Fazekas et al., 2002; Shulmeister et al., 1998; Silva
and Gibson, 1997; Silva et al., 1995; VanderBurg et al., 1997).

To determine the effective Young’s modulus, the uniaxial com-
pression with prescribed displacement is simulated in both X and Y
directions. A uniaxial compressive strain along the X axis is im-
posed on the nodes of the right edge, while the nodes at the left
edge are constrained from translating in the X direction as shown
in Fig. 6. The nodes of the bottom edge also are constrained from
translating in the Y direction to prevent the rigid body motion.
Similarly, uniaxial compression along Y axis is also performed
(Fig. 6[b]). In both cases, the nodes are constrained from rotating
in the X�Y plane. To determine the effective shear modulus
(Fig. 6(c)), a biaxial loading test has been simulated with a positive
displacement in the X direction and a negative displacement in the
Y direction. The results have been computed for the alternative val-
ues of relative densities for the prescribed boundary condition.

2.4. Determination of the effective stiffness properties

For each model with a given relative density, the effective
Young’s modulus, E⁄, and effective shear modulus, G�12, are deter-
mined. The macroscopic stress, r⁄, is calculated from the global
reaction forces of the structure in the loading direction. The sum
of the nodal reaction forces is divided by the edge length to deter-
mine the average normal stress in the loading direction. The strain,
e⁄, is determined based on the technique of gage lines introduced
by Silva (Silva et al., 1995) so as to eliminate the end effects. The
displacement at each location, where the gage line intersects a cell
wall, is computed by using a linear interpolation of the displace-
ments of the two adjacent nodes. For a given pair of gage lines,
Fig.6. Simulated tests for determinin
the normal strain is computed as the change in distance between
the gage lines divided by their original distance. The shear strain
is computed as the change in the angle between the gage lines ori-
ented at 45� with respect to the coordinate axes. Nevertheless, the
computed elastic constants for any model may vary by several per-
cent, depending on the location of the gage lines.
3. Results

The effective stiffness of the collenchyma, parenchyma, and
combined collenchyma-parenchyma (col-par) tissues are predicted
through the FEA of the FECVT models of the respective tissues. For
each tissue, five FECVT models – the SVEs – have been considered
based on the randomly chosen sections. The statistical results and
the average effective stiffness properties are described in the fol-
lowing sub-sections.

3.1. Effective stiffness of collenchyma tissue using FEA

The FECVT models of the collenchyma tissues are simulated in
ANSYS to determine the effective tissue stiffness. Each of the FECVT
models is simulated for a set of relative density, varying from 5% to
30%. Fig. 7 shows the nodal displacements of the model tissue for
15% relative density, with compressive strain along X and Y direc-
tions. The microstructure in the X direction is less stiff than that in
the Y direction. The microstructural anisotropy of the plant tissue
originates from the cellular distribution.

Supplementary Figs. S.1(a) to S.1(c) in Appendix 1, represent the
variability of the computed stiffness with one standard error.
The variations of the shear moduli are significant compared to
the Young’s moduli of the FECVT models at varying density.

The normalized effective stiffness of the FECVT model along the
Y direction is around 15–25% higher than that of the FECVT model
along the X direction for the range of density considered here
(Fig. 8). The variation reflects the stiffening effect of the cell shape,
size, and cellular distribution, and also depicts the anisotropic
behavior of the collenchyma tissue of the rhubarb petiole. Supple-
mentary Fig. S.2 (Appendix A) depicts the variability of the Pois-
son’s ratio, m�XY and m�YX , of the FECVT model of the collenchyma
tissue. However, the effective Poisson’s ratios, m�XY and m�YX , exhibit
no difference within the range of relative density (Fig. 9).

3.2. Apparent stiffness of parenchyma tissue using the FEA

The FECVT models of the parenchyma sections also are simu-
lated in ANSYS for the range of relative density, 0.05 6 q⁄/
qs 6 0.30, to determine the effective tissue stiffness. Fig. 10 shows
the nodal displacements of model tissue for 15% relative density,
with compressive strain along X and Y directions. The microstruc-
ture of the parenchyma tissue in the Y direction is less stiff than
that in the X direction, whereas the collenchyma is less rigid in
the X direction.
g effective stiffness properties.



Fig.7. Nodal displacement of the FECVT model of collenchyma tissue under uniaxial displacement BC. (a) X component of nodal displacement and (b) Y component of nodal
displacement.

Fig.8. Normalized moduli of the FECVT model of collenchyma tissue.

Fig.9. Effective Poisson’s ratio of the FECVT model of collenchyma tissue.
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Supplementary Figs. S.3(a) to S.3(c) (Appendix A) represent the
variability of the computed stiffness with one standard error. Sim-
ilar to the collenchyma tissue, the variations of the shear moduli
are significant compared with the Young’s moduli of the FECVT
models at varying relative density.

The normalized effective stiffness of the parenchyma FECVT
model along the X direction is an average of 15% higher than that
of the FECVT model along the Y direction for the range of density
considered here (Fig. 11). The clustered and graded cellularity of
the vascular bundle stiffens the parenchyma tissue in X direction
compared to Y direction. Along with the higher gradient in clus-
tered regions, the cell size and cellular distribution lower the stiff-
ness of the parenchyma tissue compared to the collenchyma tissue.
Supplementary Fig. S.4 depicts the variability of the Poisson’s ra-
tios, m�XY and m�YX , of the FECVT model of the parenchyma tissue.
However, the effective Poisson’s ratios, m�XY and m�YX , of the FECVT
model of the parenchyma tissue exhibit an average of 15% differ-
ence within the range of specified relative density (Fig. 12). From
a structural point of view, the microarchitecture of the paren-
chyma tissue seems to be the origin of this variation.
3.3. Apparent stiffness of collenchyma-parenchyma (Col-Par) tissue
using the FEA

Since the overall stiffness of a plant petiole or stem depends on
the constituent tissues as a whole, the stiffness properties of the
collective tissues also are analyzed in this section. To capture the
cumulative and integrated effects of both the collenchyma and
parenchyma (col-par) tissue, the FECVT models of the combined
tissue sections are also simulated in ANSYS for the range of relative
density, 0.05 6 q⁄/qs 6 0.30, to determine the normalized tissue
stiffness. Fig. 13 displays the nodal displacements of the col-par
FECVT model for 15% relative density, with compressive strain
along the X and Y directions. The displacements along both direc-
tions display the same order of magnitude for the cellular distribu-
tion in the combined tissue.

Supplementary Figs. S.5(a) to S.5(c) (Appendix A) represent the
variability of the computed stiffness with one standard error. An
expected trend of variability, similar to the collenchyma and
parenchyma tissue, is observed for the combined tissues (Fig. 14).

The combined effect of the collenchyma and parenchyma tissue
is different than that of the individual tissues. The normalized effec-
tive stiffness of the col-par FECVT model is nearly similar (an aver-
age of 4% higher along the X direction) along both the X and Y
directions throughout the relative density range considered here
(Fig. 14). The overall effect of the combined tissues results in
approximately equal stiffness. Nevertheless, the effective Young’s
moduli and shear modulus of the combined tissues are in-between
the individual tissues. The Poisson’s ratios, m�XY and m�YX , of the FECVT
model of the combined tissues also exhibit a difference between the
ratios (Supplementary Fig. S.6 (Appendix A) and Fig. 15).

The normalized stiffness of the individual tissues and their com-
bination provide insights into the effect of cell size, shape, and cel-
lular distribution with clustered and complex area of higher
gradients present in the rhubarb petiole. The analyses presented
here manifest the micro architectural effect of constituent tissues.
4. Discussion

The normalized stiffness of the FECVT models are compared to
the stiffness of a randomly generated Voronoi model, and the



Fig.10. Nodal displacement of the FECVT model of parenchyma tissue under uniaxial displacement BC: (a) X component of nodal displacement, (b) Y component of nodal
displacement.

Fig.11. Normalized modulus of the FECVT model of parenchyma tissue.

Fig.12. Effective Poisson’s ratio of the FECVT model of parenchyma tissue.

Fig.13. Nodal displacement of the FECVT model of col-par tissue under uniaxial disp
displacement.

Fig.14. Normalized modulus of the FECVT model of collenchyma–parenchyma
tissue.

T.R. Faisal et al. / Journal of Structural Biology 185 (2014) 285–294 291
stiffness calculated from closed-form expressions available in liter-
ature for periodic cellular materials and used for plant tissue mod-
eling (Silva et al., 1995). Cellular periodicity, however, is an
oversimplified assumption, not representative of the real random
distribution of cells often seen in plant tissues. These formulas
are obtained with an isotropic periodic cellular model that has a
hexagon as a unit cell. On the other hand, the quasi-uniform ran-
dom Voronoi model is generated for a set of uniformly distributed
points. Supplementary Fig. S.7 (Appendix A) shows a regular hex-
agonal unit cell and the quasi-uniform randomly generated Voro-
noi model.

The normalized stiffness of the FECVT models of collenchyma,
parenchyma, and combined collenchyma-parenchyma tissues;
quasi-uniform Voronoi model; and the hexagonal unit cell are
shown in Fig. 16. The FEA of the quasi-uniform random Voronoi
lacement BC: (a) X component of nodal displacement, (b) Y component of nodal



Fig.15. Effective Poisson’s ratio of the FECVT model of collenchyma–parenchyma
tissue.

Fig.16. Comparison of the normalized modulus of the FECVT models of the
different constituent tissues to quasi-uniform random Voronoi and hexagonal unit
cell models.
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model shows an average of 8% and 6% higher axial and shear mod-
ulus, respectively, compared to the closed-form solutions obtained
for the unit cell shown in (Supplementary Fig. S.7(a) (Appendix A)).
The results of the moduli are in agreement with those presented by
Gibson et al. (Gibson and Ashby, 1999; Silva et al., 1995). For a gi-
ven set of relative density, the normalized effective elastic moduli
of the different models at X and Y directions are shown in Fig. 16(a
and b). With respect to relative density, 0.05 6 q⁄/qs 6 0.30, the
FECVT models of the rhubarb tissues exhibit nearly equal stiffness,
which is 31–40% less rigid than the quasi-uniform random Voronoi
model, and 29–35% less stiff than the periodic unit cell along the X
direction. On the other hand, the stiffness of the FECVT models of
the rhubarb tissues varies along the Y direction. Along this direc-
tion, for relative densities varying between 5% and 30%, the collen-
chyma FECVT model is 20–39% less stiff than the random Voronoi
model and 15–35% less rigid than the unit cell model; the
parenchyma FECVT model is 22–47% more pliant than the random
Voronoi model and 19–44% less stiff than the unit cell model.
The col-par FECVT model is 18–39% more compliant than the qua-
si-uniform random Voronoi model and 24–33% than the unit cell
model. Similarly, the shear moduli of the FECVT models are consid-
erably lower than both the random Voronoi and unit cell models.
The shear modulus of the collenchyma FECVT model is 30–57% less
rigid than the quasi-uniform randomly generated Voronoi and
hexagonal unit cell models. However, the FECVT models of the
parenchyma and combined collenchyma–parenchyma tissues are
much less stiff than the random Voronoi and the unit cell models.

To generate the Voronoi tessellation, a (quasi) uniform distribu-
tion of points has been imposed. Hence, the randomly generated
Voronoi model displays a uniform cell size, a factor that influences
the stiffness properties as shown in Fig. 16. In the FECVT model,
both the shape and size of the cells vary significantly with respect
to the random Voronoi model and the hexagonal cell model. There-
fore, the shape and size of the cells affect the normalized stiffness,
which varies with density. The variation of the stiffness of the dif-
ferent FECVT models along the X and Y direction reflects the stiff-
ening effect of the cell shape, size, and cellular distribution.
Nonetheless, since the FECVT model contains smaller cells than
those of the actual tissue, the stiffness could be overestimated. In
addition, the short cell walls modeled by the beam element may
impose spurious stiffness.

Fig. 17 depicts the effective Poisson’s ratios for the FECVT, ran-
dom Voronoi, and hexagonal unit cell models. The finite element
analyses of the different FECVT models and random Voronoi mod-
els exhibit a marginal difference between the Poisson’s ratio of m�XY

and m�YX . The Poisson’s ratios of the FECVT, and the random Voronoi
model are weakly dependent on relative density, and the microar-
chitecture of the tissue weakly affects the Poisson’s ratio.

The effective stiffness of the cellular tissue can be obtained from
the computed wall stiffness (Faisal et al., 2013; Faisal, 2013). The
axial stiffness of parenchyma tissue lies between 13.2 and
19.6 MPa and the shear modulus is approximately 6.7 MPa. The
experimental stiffness of fresh parenchyma tissue was obtained



Fig.17. Comparison of effective Poisson’s ratio of the FECVT models of the different
constituent tissues to quasi-uniform random Voronoi and hexagonal unit cell
models.
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from compression tests of cubes of parenchyma immersed in a
solution of 0.02 M each of potassium phosphate monobasic and
potassium phosphate dibasic (N. Hristozov, unpublished data).
The experimental stiffness of the fresh parenchyma tissue is
approximately 5 MPa, which is considerably lower than the com-
puted stiffness of the respective tissue. This difference may result
from experimental and biological factors as well as from the com-
puter model as it currently stands. First, the orientation of the
parenchyma cubes during the compressive tests differed from that
used in the computational model (longitudinal in the experiment
versus transverse in the model). In addition to the orientation of
the compressive force, the osmotic strength of the buffer used dur-
ing testing can affect the experimental results since the internal
turgor pressure within the fluid-filled cells plays an important role
in controlling the cellular stiffness. Ideally, this effect would be
quantified and included in the model. Another biological factor
that can play a role is the chemical make-up and molecular organi-
zation of the cell walls, which can differ between cells and cell
types (e.g. the vascular tissue is reinforced by the production of
internal secondary cell walls; dissimilar cellulose microfibril angles
can alter wall strength in specific directions). In the computational
model, the tissue stiffness is derived from the wall stiffness based
on an average of 30% cellulose microfibrils, 60% pectin, and 10%
hemicelluloses – a typical primary cell wall configuration for dicot-
yledonous plants (Faisal, 2013). Hence, instead of using the generic
composition of the dicotyledonous plant cell wall, the cell wall
composition and the microfibril angle (MFA) of the model plant
should be determined via experiments. This would enable the cor-
responding computational stiffness to provide a more realistic pre-
diction of the actual tissue stiffness. Finally, as noted earlier, the
FECVT model can result in a smaller cell size per unit area, thereby
resulting in higher numbers of both cells and cell walls, factors that
would increase the stiffness of the model. These factors reflect the
complexity of plant tissue systems and the need to consider multi-
ple parameters during their modeling. Nevertheless, the utility of
our system is demonstrated and the computational stiffness de-
rived using values from the literature provides theoretical bounds
for the stiffness of the constituent tissues. This step is essential to
develop a multiscale model capable of predicting the overall
mechanical properties of plant petioles and stems from the struc-
tural properties obtained at each length scale as well as the prop-
erties of the constituent tissues.
5. Conclusion

Cellular solids are prevalent both in nature and in human-made
engineering structures. Their constituent materials and the way
they are architectured across the length scale govern the mechan-
ical response at the macroscale. A micromechanical analysis, cap-
turing the realistic arrangement of the microstructure can thus
provide insight into the overall macroscale behavior of a cellular
material. The FECVT method is general and not tailored for a spe-
cific species of plant tissue. It has already been applied to repro-
duce the tissue geometry of A. thaliana and P. melinonii (Faisal
et al., 2012). Furthermore, FEA has been carried out to predict
the mechanical properties of the surrogated models describing
the tissue of P. melinonii (Faisal et al., 2011). This paper has pre-
sented a microstructural analysis of rhubarb tissues, which can
be considered as a paradigm of random cellular structures with
complex heterogeneity. The geometric models developed via the
FECVT algorithm surrogate the constituent tissues of the rhubarb
petiole, thereby allowing the calculation of the elastic properties
of a cellular tissue. Finite element analysis has been used as a com-
putational mean to assess the constituent tissue properties of the
rhubarb petiole, whose cellular microstructures have been gener-
ated by the FECVT algorithm. Instead of a large scale RVE, the sta-
tistical volume elements of the tissue are considered to capture the
microstructural irregularity present in the tissue and compute its
stiffness via FEA. The finite element analysis of the SVEs depicts
the impact of complex heterogeneity and graded cellularity in
the tissues. The cell shape, size, and cellular distribution of the col-
lenchyma and parenchyma tissues are shown to have a different
impact on their respective normalized stiffness properties. The col-
lenchyma tissue is found to be stiff along the Y direction, whereas
the parenchyma tissue stiff in the X direction. The variation of stiff-
ness along the X and Y directions are due to the heterogeneous cel-
lularity and clustered higher area gradients observed in the
parenchyma tissue, albeit the directions are chosen arbitrarily.
The axial stiffness of the combined tissue, on the other hand, is
similar in both directions. The shear modulus of the collenchyma
tissue has been also found higher compared to the parenchyma tis-
sue and in-between for the tissues as a whole. By comparing these
results with the quasi-uniform randomly generated Voronoi and
hexagonal unit cell models, a clear inference can be made about
the nonhomogeneous cellularity in the rhubarb tissues, a factor
that make them more compliant than the predictions obtained
with the periodic as well as quasi-uniform random cellular
microstructure.
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